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GENERALIZED RHEOLOGICAL MODEL OF SHEAR

DEFORMATION OF STRUCTURED

CONDENSED MEDIA

UDC 532.135:532.52;539.374S. V. Stebnovskii

A relaxation-type macrorheological equation is constructed, which describes shear deformation of
elastoplastoviscous media containing microvoids. The equation corresponds to regimes of steady-state
creep and elastic and plastic strains, which pass to the regime of viscous flow with limited growth of
voids at high shear strain rates.
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A typical feature of some solid–plastic materials, in addition to spallation fracture, is viscous fracture. One
component of the latter process (in addition to the development of cavitation pores) is macroscale plastic deformation
passing to the viscous flow regime under extremely high shear loads [1, 2]. Examples of such a process are flows
in a shaped-charge jet and also in the region of formation of the contact surface in explosive welding of metals [3].
Moreover, viscous shear flow precedes the failure of the structure of liquid-plastic and liquid media whose properties
lie in a wide range of rheological parameters [4–6]. Various aspects of dynamics of porous materials within the
framework of elastoplastic model media have been studied in several papers [7–11]. It is also of interest to consider
the problem of constructing a generalized model to describe the evolution of the structure of a condensed medium
with microvoids (microbubbles in liquids and micropores in solid–plastic materials) in the entire range of shear
deformation from creep to viscous flow. By definition, a rheological analog of such media is an elastoplastoviscous
body (EPVB) [5] containing microvoids in its initial state.

1. Let us consider shear deformation of an EPVB containing microvoids. The mechanical analog of such
a medium can be schematically presented as is shown in Fig. 1. Here G0 is the modulus of shear elasticity of the
EPVB, η∗ is the coefficient of plastic viscosity of the EPVB for the St. Venant element (SV) passing through the
yield point of the medium, μ0 is the shear viscosity of the EPVB after the failure of its structure and the transition
to the viscous (Newtonian) flow regime, μ1 and G1 are the viscous and elastic elements (parallel connection of G1

and μ1 forms the Voigt node corresponding to viscoelastic properties of the voids), and μ2 is the shear viscosity of
the medium in the creep regime.

The total strain of the EPVB can be presented as

ε = εe + εp + εd + εc,

where εe and εp are the elastic and plastic strains of the medium, εd is the strain of disperse elements (voids), and
εc is the creep-induced strains in the medium. Substituting the expressions relating the stress σ applied to the
mechanical model and the strains in the nodes

εe =
σ

2 G0
, εp =

σ

2(μ0 + η∗) d/dt
, εd =

σ

2(G1 + μ1 d/dt)
, εc =

σ

2μ2 d/dt
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Fig. 1. Mechanical analog of an elastoplastoviscous medium containing microvoids.

into this equation, we obtain

(μ0 + η∗)μ1˙̇σ̇+ [G0μ1 + (μ0 + η∗)(G0 + G1 + G0μ1/μ2)]σ̈ + G0G1[1 + (μ0 + η∗/μ2)]σ̇

= 2(μ0 + η∗)G0μ1̇ε̇˙+ 2(μ0 + η∗)G0G1ε̈. (1)

Integrating Eq. (1) with respect to time and passing to the three-dimensional case, we obtain

(μ0 + η∗)μ1T
⊕⊕ + [G0μ1 + (μ0 + η∗)(G0 + G1 + G0μ1/μ2)]T⊕ + G0G1[1 + (μ0 + η∗)/μ2]T

= 2(μ0 + η∗)G0μ1D
⊕ + 2(μ0 + η∗)G0G1D, (2)

where “⊕” is the sign of the convective derivative; T and D are the tensor of additional viscous stresses (the meaning
of this tensor is described below) and the strain-rate tensor, respectively. Multiplying Eq. (2) by T and taking into
account that the relations η∗ � μ0, T · T = 2θ2 (this equality is valid when the yield point is reached), T · T⊕ = 0,
and T · T⊕⊕ = −T⊕ · T⊕ are satisfied in passing through the yield point, we find from the resultant equation
multiplied by (G0G1)−1 that

η∗ =
θ2

λ1T⊕ · T⊕/(2G0) + (D + λ1D⊕) · T − θ2/μ2
, (3)

where λ1 = μ1/G1. Finally, substituting Eq. (3) into Eq. (2) divided by G0G1 and performing certain transforma-
tions, we obtain a rheological equation for the EPVB containing voids:

λ1

G0

(
μ0 +

θ2

D · T + λ1(D⊕ · T + T⊕ · T⊕/(2G0)) − θ2/μ2

)
T⊕⊕

+
1

G0

[
μ0 + λ1G0 +

(1 + G0/G1)θ2

D · T + λ1(D⊕ · T + T⊕ · T⊕/(2G0)) − θ2/μ2
+ μ0

G0

G1

+ λ1
G0

μ2

(
μ0 +

θ2

D · T + λ1(D⊕ · T + T⊕ · T⊕/(2G0)) − θ2/μ2

)]
T⊕

+
[
1 +

1
μ2

(
μ0 +

θ2

D · T + λ1(D⊕ · T + T⊕ · T⊕/(2G0)) − θ2/μ2

)]
T

= 2
(
μ0 +

θ2

D · T + λ1(D⊕ · T + T⊕ · T⊕/(2G0)) − θ2/μ2

)
(D + λ1D

⊕). (4)

Using notation (3), we can write this rheological equation in the form

λ1

G0
(μ0 + η∗)T⊕⊕ +

1
G0

[
μ0 + λ1G0 +

(
1 +

G0

G1

)
η∗ + μ0

G0

G1
+ λ1

G0

μ2
(μ0 + η∗)

]
T⊕

+
(
1 +

μ0 + η∗
μ2

)
T = 2(μ0 + η∗)(D + λ1D

⊕).
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In the case of pure shear, the rheological equation of the EPVB with voids acquires the form
λ1

G0
(μ0 + η∗)τ̈ +

1
G0

[
μ0 + λ1G0 +

(
1 +

G0

G1

)
η∗ + μ0

G0

G1
+ λ1

G0

μ2
(μ0 + η∗)

]
τ̇

+
(
1 +

μ0 + η∗
μ2

)
τ = 2(μ0 + η∗)(ε̇ + λ1ε̈), (5)

where

η∗ =
2τ2

∗
(λ1/G0)τ̇2 + 2(ε̇ + λ1ε̈)τ − 2τ2∗/μ2

and τ∗ is the yield point under pure shear.
2. Let us analyze the void-containing EPVB behavior in various loading regimes.
2.1. The medium is subjected to a constant shear stress τ < τ∗ such that τ̇ = 0. As microvoids are not

deformed thereby, we have G1 → ∞, λ1 → 0, and G0/G1 � 1. In addition, the initial value of μ2 remains almost
unchanged because the medium structure is not destroyed or is changed only very weakly under these conditions.
Hence, μ2 � μ0 and η∗ � μ0 in solid–plastic media, and Eq. (5) reduces to an equation of the form

ε̇c = f(τ, t) =
1
2

( 1
η∗

+
1
μ2

)
τ, (6)

where η∗ = τ2∗ /(ε̇τ − τ2∗ /μ2). From here, we can find the solution for steady-state creep in the simplest case with
μ2 = const:

εc = εc(0) +
τ

2

( 1
μ2

+
1
η∗

)
t. (7)

Let us find the relation between Eqs. (6) and (7) and the known dependences of ε̇c and εc on t for the creep
regime in solid materials. In polymers, the strain consists of the elastic, viscoelastic, and viscoplastic components
[12]. (The latter type of strains is caused by irreversible slipping of macromolecules with respect to each other
at temperatures higher than the yield temperature.) The creep velocity asymptotically tends to a constant [2]:
ε̇c = A(τ), i.e., the time evolution of the strain in the creep regime can be approximated by the relation

εc(t) = εc(0) + A(τ)t. (8)

For metals with a nonlinear dependence of ε̇c on τ , we can use the flow theory

ε̇c = f(τ), (9)

if τ changes in time slowly and monotonically. Thus, Eqs. (6) and (7) derived in this work are similar to Eqs. (9)
and (8), respectively, i.e., the generalized equation reduces to the known equations of steady-state creep [2, 12].

2.2. The medium is subjected to a shear stress varied in time, which is lower than the yield point, i.e., τ < τ∗
and τ̇ �= 0. In this case, we also have G1 → ∞, λ1 → 0, and G0/G1 � 1. With allowance for this fact, we divide
Eq. (5) by η∗ to obtain

1
G0

(
1 +

μ0

η∗

)
τ̇ +

[ 1
η∗

+
(
1 +

μ0

η∗

) 1
μ2

]
τ = 2

(
1 +

μ0

η∗

)
ε̇e.

As μ0/η∗ � 1, we have
1

G0
τ̇ +

( 1
η∗

+
1
μ2

)
τ = 2ε̇e. (10)

If τ is sufficiently small, so that (1/η∗ + 1/μ2)τ � τ̇ /G0, then Eq. (10) reduces to Hooke’s law τ = 2G0εe

corresponding to elastic deformation of the medium. In the case of three-dimensional deformation with T < θ,
T⊕ �= 0, and G1 → ∞, with allowance for μ0/μ2 � 1, Eq. (4) reduces to an equation of the form

(
1 +

θ2

μ2D · T − θ2

)
T +

μ0

G0

(
1 +

1
μ0

θ2

D · T − θ2/μ2

)
T⊕ = 2

(
μ0 +

θ2

D · T − θ2/μ2

)
D (11)

corresponding to the model of a homogeneous EPVB. If we assume that θ2/μ2 � 1, Eq. (11) transforms to

T +
1

G0

(
μ0 +

θ2

D · T
)
T⊕ = 2

(
μ0 +

θ2

D · T
)
D (12)
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[μ0 + θ2/(D · T ) = μz is the structural viscosity of a homogeneous medium], which was validated experimentally
[5]. At higher intensities of shear stresses [θ2(μ0D × T )−1 � 1], because of the failure of the ordered structure of
the medium (μz → μ0), Eq. (12) reduces to the well-studied Maxwell equation for Newtonian fluids [13]:

T + λ0T
⊕ = 2μ0D, λ0 = μ0/G0. (13)

2.3. If T > θ and D · T � θ2/μ2, i.e., the deformation occurs in the high-velocity plastic flow regime and
(1 + G0/G1)θ2{D · T + λ1[D⊕ · T + T · T/(2G0)] − θ2/μ0}−1 � μ0 thereby, with allowance for μ0/μ2 � 1, Eq. (4)
yields

T + (λ0 + λ1 + μ0/G1)T⊕ + λ0λ1T
⊕⊕ = 2μ0(D + λ1D

⊕). (14)

If the loading regime is such that the term λ0λ1T
⊕⊕ is very small, as compared with the first two terms in

the left side of Eq. (14), this equation reduces to the classical Jeffries equation that describes the behavior of gels,
emulsions, and suspensions (including gas-containing suspensions, i.e., liquids with bubbles) [14, 15]:

T + λ̃T⊕ = 2μ0(D + λ1D
⊕). (15)

Here λ̃ = λ0 +λ1 +μ0/G1 and λ1 is the time of retardation (retarded recovery of the shape of the deformed volume
of the medium after the stress is removed). Obviously, retardation is caused by the presence of voids in the medium:
as G1 → ∞, Eq. (15) reduces to the Maxwell equation (13).

Let us analyze the rheological characteristics of the EPVB containing voids by an example of the Couette
flow for which the components of the velocity vector v in the Cartesian coordinate system (x1, x2, x3) have the form
v1 = ε̇x2 and v2 = v3 = 0. We recall that the total stress tensor is

χ = −pI + T = −pI + ((1/3) trT )I + S = −(p − (1/3) trT )I + S,

where p is the thermodynamic pressure, I is the unit tensor, T is the tensor of additional viscous stresses, tr T is
the trace of the tensor T , and S is the deviator of the tensor T . In Eq. (15) written in matrix form, we substitute
the values of the convective derivatives

T⊕ =
dT

dt
+ T · W + (T · W )T + a(T · D + D · T ),

D⊕ =
dD

dt
+ D · W + (D · W )T + 2D2,

where D = (∇v + ∇vT)/2 and W = (∇v − ∇vT)/2. Taking into account that dT/dt = 0 and dD/dt = 0 for a
steady-state shear flow, we decompose Eq. (15) with respect to the ith and jth components and obtain a system of
algebraic equations where the components of the symmetric tensor of additional viscous stresses

T =

⎛
⎜⎝

σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

⎞
⎟⎠

have the form

τ12 = τ21 =
μ0ε̇τ + λ1λ̃μ0ε̇

3
τ (1 − a2)

(1 − a2)λ̃2ε̇2
τ + 1

, τ13 = τ23 = τ31 = τ32 = 0,

σ11 = (1 − a)(λ̃τ12 − μ0λ1ε̇τ )ε̇τ , σ22 = (1 + a)(λ1μ0ε̇τ − λ̃τ12)ε̇τ , σ33 = 0

and, hence,

σ̃ =
1
3

tr T =
1
3

(σ11 + σ22 + σ33) = −2
3

aμ0ε̇
2
τ

λ̃ − λ1

1 + (1 − a2)λ̃2ε̇2
τ

.

Thus, if there occurs a pure shear deformation (shear flow), i.e., ε̇τ �= 0, then μ0 = 0, σ̃ = 0, and χ = −pI +S in an
ideal liquid; in a viscous medium, however, σ̃ �= 0, i.e., stresses normal to the shear plane σ11 and σ22 are formed in
the medium, which is validated experimentally (Weisenberg effect) [16]. The viscosimetric functions for the medium
under study, i.e., the effective shear viscosity μ∗ and the first N1 and second N2 differences of the normal stresses
are written as
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μ∗ =
τ12

ε̇τ
= μ0

1 + (1 − a2)λ1ε̇τ De
1 + (1 − a2)De2 ; (16)

N1 = σ11 − σ22 = 2μ0
(λ̃ − λ1)ε̇2

τ

1 + (1 − a2)De2 = 2μ0
(1 + G0/G1)ε̇τ De
1 + (1 − a2)De2 ; (17)

N2 = σ22 − σ33 = − (1 + a)μ0(λ̃ − λ1)ε̇2
τ

1 + (1 − a2)De2 = − (1 + a)(1 + G0/G1)μ0ε̇τ De
1 + (1 − a2)De2 , (18)

where De = λ̃ε̇τ is the Debora number. As the effective viscosity has to be always positive, the parameter a should
obey the inequality −1 � a � 1 in accordance with Eq. (16). It follows from [13] that the real processes in liquids
are described only by the upper convective derivatives from the stress and strain-rate tensors, i.e., −1 � a � 0.
Note, for a medium containing only practically undeformable micronuclei of voids, we have G1 → ∞, λ1 → 0, and
functions (16)–(18) transform to a system of viscosimetric functions of the Maxwell model [5].

Let us analyze the dependence of the isotropic component of the total stress tensor χ = −(p − σ̃)I + S on
the shear strain rate ε̇τ . As −1 � a � 0 and λ̃ = λ0 + λ1 + μ0/G1, the isotropic component of the tensor χ is
written as

−P̃ I = −(p − σ̃)I = −
(
p − 2

3
|a| (G0 + G1)μ2

0ε̇
2
τ

G0G1[(1 − a2)λ̃2ε̇2
τ + 1]

)
I,

i.e., for μ0 �= 0 and ε̇τ �= 0, the hydrostatic pressure P̃ in the medium decreases, and a tensile stress is formed
in the vicinity of microvoids. If this stress satisfies the condition of expansion of microvoids [17], their volume
concentration increases. With a further increase in ε̇τ , however, so that (1 − a2)λ̃2ε̇2

τ � 1, we obtain

−P̃ I ≈ −
(
p − 2

3
|a|μ2

0

G−1
0 + G−1

1

(1 − a2)λ̃2

)
I = −

(
p − 2

3
|a|

1 − a2
G1

1 + G1/G0

(G1/G0 + μ1/μ0 + 1)2
)
I.

As G1 decreases with increasing voids, the condition G1/G0 � 1 is satisfied, and

P̃ → p − 2
3

|a|
1 − a2

G1

(1 + μ1/μ0)2
.

Thus, with decreasing G1, the hydrostatic pressure P̃ increases and tends to the thermodynamic (“initial”) pres-
sure p; the growth of voids is decelerated thereby.

As here we discuss an effect of principal importance, namely, the negative feedback in the mechanism of void
growth (in the shear flow zone) restricting the evolution of cavitation, it seems reasonable to perform a comparative
analysis of this process using another approach.

3. As the mechanical model shown schematically in Fig. 1 and the rheological equation (4) constructed on
the basis of this model do not contain explicit dependences of the shear elasticity modulus G1 and effective viscosity
μ∗ on the volume concentration of voids α, we use the following approach to constructing the rheological equation
for the EPVB containing voids.

The expressions for the effective shear elasticity modulus G and effective viscosity of the medium containing
voids with a fixed volume concentration α can be presented as [18]

G(α) =
(1 − α)G∞

1 + [(8 − 10ν)/(7 − 5ν)][1 + (1 − αmα)/α2
m]α

; (19)

μ = μ0/(1 − 1,09 3
√

α ), α < αm, (20)

where G∞ is the dynamic modulus of shear elasticity of a homogeneous matrix, 0.4 � ν � 0.5 is Poisson’s ratio of
the matrix, αm � 0.75 is the volume concentration of the ultimate packing of voids, and μ0 is the shear viscosity
of the matrix. The mechanical model of a homogeneous medium rheologically equivalent to the examined medium
containing voids with a fixed value 0 � α < αm is shown in Fig. 2. Here G(α) and μ(α) are the elasticity modulus
and viscosity of the rheologically equivalent medium determined from (19) and (20), respectively; η∗ and μc are the
plastic and shear viscosities of the rheologically equivalent medium in the creep regime.
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Fig. 2. Mechanical analog of a homogeneous medium rheologically equivalent to an elastoplastovis-
cous medium containing voids.

Using the method of constructing Eq. (4), based on the mechanical model of a rheologically equivalent
medium, we obtain

μ(α) + η∗
G(α)

T⊗ +
(
1 +

μ(α) + η∗
μc

)
T = 2[μ(α) + η∗]D, (21)

where η∗ = θ2/(D · T − θ2/μc). For T < θ and T⊕ = 0, the voids are micronuclei (μ|α�0 � μ0). With allowance for
μ0 � η∗, Eq. (21) yields

(1 + η∗/μc)T = 2η∗D.

For pure shear, this equation yields the relations for steady-state creep

ε̇c =
1
2

( 1
η∗

+
1
μc

)
τ, εc = εc(0) +

τ

2

( 1
μc

+
1
η∗

)
t

similar to Eqs. (6) and (7), which coincide with the known equations for steady-state creep [2, 12].
In the case T > θ and D ·T � θ2/μc, i.e., in the regime of high-velocity plastic deformation with the medium

passing to a state with a destroyed structure, with allowance for μ(α) � η∗, Eq. (21) reduces to an equation of the
form

(
1 +

θ2

μcD · T
)
T +

1
G

(
μ +

θ2

D · T
)
T⊕ = 2

(
μ +

θ2

D · T
)
D.

For D · T � θ2, this equation reduces to the known Maxwell equation [13]

T + λT⊕ = 2μD, λ = μ/G.

Based on the model used in Sec. 2, the last equation yields the following relations for the Couette flow:

μ∗ =
μ

1 + (1 − a2)De
, σ11 =

(1 − a)μλε̇2
τ

1 + (1 − a2)λ2ε̇2
τ

, σ22 = − (1 + a)μλε̇2
τ

1 + (1 − a2)λ2ε̇2
τ

,

σ33 = 0, σ̃ =
1
3

tr T =
2|a|
3

μ2 ε̇2
τ

G[1 + (1 − a2)λ2ε̇2
τ ]

, (22)

N1 = σ11 − σ22 =
2με̇τ De

1 + (1 − a2)De2 , N2 = σ22 − σ33 = − (1 + a)με̇τ De
1 + (1 − a2)De2 , De = λε̇τ .

An analysis of the behavior of these functions depending on ε̇τ and α revealed the following. With increasing ε̇τ ,
the value of μ∗ first decreases and the values of N1, N2, and N1 − N2 increase. With increasing ε̇τ , the relation
(1 − a2)De � 1 being valid, the viscosimetric functions tend to the asymptotic expressions

μ∗ → G(α)
(1 − a2)ε̇τ

, N1 → 2G(α)
1 − a2

, N2 → −G(α)
1 − a

, N1 − N2 → 3 + a

1 − a2
G(α),

i.e., like G(α), these functions monotonically decrease with increasing α.
Let us analyze the dependence of the hydrostatic pressure P̃ and, hence, the tensile stress in the medium,

on ε̇τ . The isotropic component of the total stress tensor χ = −pI + T = −(p − σ̃)I + S has the form

−P̃ I = −(p − σ̃)I = −
(
p − 2

3
|a| με̇τ

G[1 + (1 − a2)λ2ε̇2
τ ]

)
I,

i.e., for μ �= 0 and ε̇τ �= 0, the resultant hydrostatic pressure P̃ in the medium decreases. For this reason, a field
of tensile stresses is formed in the vicinity of microvoids, which can lead to an increase in the size of microvoids if
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the energy inequality obtained in [17] is valid. With a further increase in ε̇τ , the condition (1 − a2)λ2ε̇2
τ � 1 being

valid, formula (22) reduces to the expression

σ̃ =
2|a|

3(1 − a2)
G(α),

i.e., with allowance for Eq. (19), σ̃ is a decreasing function of α; thereby the pressure P̃ is recovered to the initial
level p, thus, restricting the growth of voids. The analysis of the rheological equation (21) also implies the presence
of negative feedback in the mechanism of void growth, which does not allow unlimited cavitation in the case of
shear deformation of the EPVB containing microvoids at the initial time.

Thus, the rheological equation (4) is consistent with the generalized model of shear deformation of condensed
(liquid, liquid-form, and solid–plastic) media containing microvoids. In all deformation regimes (steady-state creep,
elastic deformation, plastic deformation, and viscous creep), the generalized model transforms to a series of known
and experimentally validated models corresponding to these regimes of shear deformation of condensed media.
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